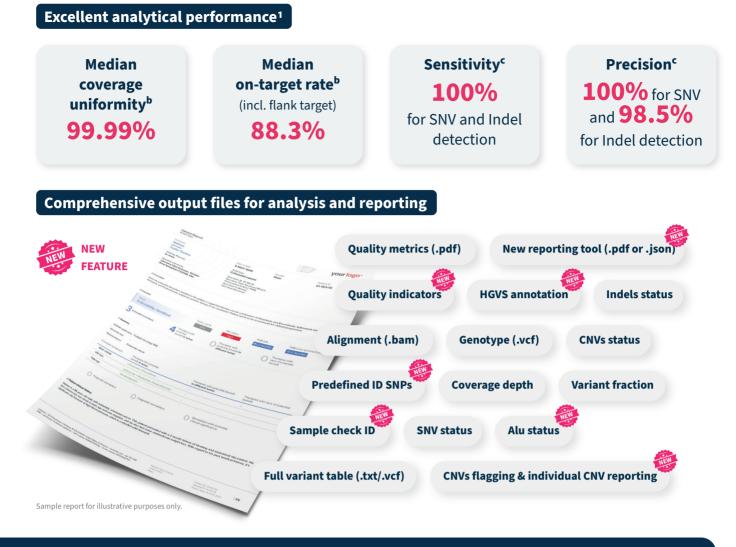
SOPHIA GENETICS

SOPHiA DDM[™] Hereditary Cancer Solution (HCS) v2.0 Confidently assess genetic variants predisposing to cancer

The **SOPHiA DDM[™] HCS v2.0** is a capture-based NGS application that characterizes challenging variants associated with hereditary cancers. It enables researchers to accelerate their research in-house with high-quality content and the advanced analytical features of the SOPHiA DDM[™] Platform.

Highlights

- Includes guideline-driven content targeting coding and non-coding regions in 83 biologically actionable genes.
- Contains hg38-based analytics, built-in sample check ID, and selected UTRs and promoter regions.
- Detects SNVs, Indels and CNVs, and more complex variants such as *Alu* insertions, Boland Inversion and *PMS2/PMS2CL* gene conversion.
- ✓ Improves laboratory logistics and resource management with SOPHiA GENETICS™ Universal Library Prep^a.


Guideline-driven content covers 83 biologically actionable genes 🛆 Full gene 🗆 Gene hotspots 🔿 CNVs 😭 Promoters/UTRs

415		001/1101				544.50		221		0.011//	
AIP	$\triangle \circ$	CDKN2A	$\Delta \Box \circ$	MDH2	$\triangle \circ$	PALB2	$\triangle \circ$	RB1		SPINK1	
APC	△□○☆	CHEK2	$\Delta \Box \circ$	MEN1	$\Delta \Box O$	PDGFRA	△ ○	RET	∆ 0	STK11	Δ O
ATM		CTNNA1	△ ○	MET	△ ○	РІКЗСА	△ ○	RNF43	△ 0	SUFU	△ ○
AXIN2	△ O	DICER1		MITF	△ ○	PMS2		SDHA	△ 0	TERC	$\Delta \Box O$
BAP1	△ 0	DLST	<u>Δ</u> 0	MLH1	△□○☆	PMS2CL*	0	SDHAF2	Δ O	TERT	△□○☆
BARD1	△ 0	EPCAM	<u>Δ</u> 0	MLH3	△ 0	POLD1	△ 0	SDHB	△ 0	TGFBR2	△ ○
BMPR1A		FAM175A	<u>∆</u> 0 ☆	MSH2	$\Delta \Box O$	POLE	△ 0	SDHC	∆ 0	TMEM127	✓ △ ○
BRCA1	△□○☆	FH	<u>Δ</u> 0	MSH3	△ 0	POT1	△ 0	SDHD	Δ O	TP53	$\Delta \Box O$
BRCA2	△□○☆	FLCN		MSH6	△ 0	PRKAR1A		SEC23B	Δ O	TSC1	$\Delta \Box O$
BRIP1		GREM1	<u>∆</u> 0 ☆	МИТҮН	△ 0	PRSS1	△ 0	SLC25A11	△ 0	TSC2	$\Delta \Box \circ$
CDC73	∆ 0	HOXB13	<u>Δ</u> Ο	NBN	△ ○	PTCH1	△ 0	SMAD4	△ 0	VHL	$\Delta \Box O$
CDH1	∆ 0	KIT	<u>Δ</u> 0	NF1	$\Delta \Box O$	PTEN	△ 0 ☆	SMARCA4	∆ 0	WRN	△ 0
CDK4	∆ 0	LZTR1		NF2	△ ○	RAD51C	△ 0	SMARCB1		WT1	△ ○
CDKN1B		MAX	△ 0	NTHL1	△□○☆	RAD51D	△ 0	SMARCE1	∆ 0		

*pseudogene.

© SOPHIA GENETICS 2023 GL-GN-2300065-r2

The SOPHiA DDM[™] HCS v2.0 has comprehensive, guideline-driven content that ensures we're obtaining the most relevant insights from genomic data. The expanded capabilities available on the SOPHiA DDM[™] Platform, including built-in sample check ID and HGVS annotation, makes it the optimal solution for timely, in-house results on complex mutational analysis.

Unimore | Modena, Italy

Specifications Covered diseases	Breast, ovarian, endometrial, prostate, abdominal, endocrine and neuroendocrine,					
Input amount	nervous, renal, and skin cancers 50 ng DNA					
Multiplexing for > 250x coverage depth	 16 for Illumina MiSeq[®] v3 (2x200bp), 8-12 for v2 (2x150bp) 48 for Illumina NextSeq[®] 2000 P1, 192 for P2 72 for Illumina NextSeq[®] 500/550 mid-output, 192 for high-output 96* for MGI DNBSEQ-G400, FCL, 1 lane of 4 (2x200) *theoretical estimated maximum number of samples to be multiplexed, assuming 900 million reads per lane, and considering available kit size 					
Automation scripts	*theoretical estimated maximum number of samples to be multiplexed, assuming 900 million reads per lane, and considering availab					

Want to know more?

SOPHiA DDM[™] Hereditary Cancer Solution (HCS) v2.0 is for research use only – not for use in diagnostic procedures. ^aAvailable for Research Use Only SOPHiA DDM[™] Oncology and Rare and Inherited Disease applications. ^bBased

Contact us at: info@sophiagenetics.com

on analysis of 16 blood samples using Illumina NextSeq[®] 550 sequencer. ^cBased on analysis of 17 blood samples using Illumina NextSeq[®] 550 sequencer. ¹Data on File. CNV, copy number variation; HGVS, human genome variant society; NGS, next generation sequencing; SNV, single nucleotide variant. © 2023 SOPHiA GENETICS[™]. All rights reserved. All product and company names are trademarks[™] or registered[®] trademarks of their respective holders. Use of them does not imply any affiliation with or endorsement by them.

ΉΙΡΔΑ